全等三角形课件(经典十一篇)
发表时间:2022-06-16全等三角形课件(经典十一篇)。
⬘ 全等三角形课件 ⬘
本节课探索三角形全等的判定方法一,是后面几种判定方法的基础,是本章的重点也是难点,三角形全等 教学反思 贾祥川。教材看似简单,仔细研究后才发现对七年级的学生来说有些困难,处理不好可能难以成功。备课时发现本节课的难点就是处理从确定一个三角形全等需要几个条件到得到三角形全等的判定方法这个环节,让学生动手操作和学生相互交流验证很好地解决了问题,圆满地完成本节课的教学任务。反思整个过程,我觉得做得较为成功的有以下几个方面:
1、教学设计整体化,内容生活化。通过两块全等三角形玻璃打碎了一块如何裁出一模一样的一块玻璃这一实际问题引入课题,提问复习了全等三角形的定义,又很好的过度到确定一个三角形需要哪些条件的问题上来。把知识不知不觉地体现出来,学得自然新鲜。让学生初步体验到成功的喜悦。数学学习来源于生活实际,学生学得轻松有趣,教学反思《三角形全等 教学反思 贾祥川》。
2、把课堂充分地让给了学生。在上课过程中,我尽量不做过多的讲解,通过引导让学生发现问题并通过动手操作、交流讨论、展示来解决问题。让学生在轻松的气氛中学习数学知识,积累数学活动的经验。
3、在难点的突破上取得了成功。上这堂课前,我一直担心学生在得出三角形全等的判定方法上出现理解困难。课堂上我先让学生在白板上画给定一角一边的三角形,观察发现给定一个条件对应相等不能保证两个三角形全等,再让学生在卡纸上画给定两个条件的三角形并剪下来与小组成员比较及上台展示得出结论两个条件对应相等的两个三角形不一定全等。三角的情况较为简单所以让学生举出反例即可。三边对应相等的情况先让学生大胆猜想,再画图、剪下来比较发现制作的三角形形状和大小完全相同,即三角形都全等,最后同学们都不约而同地得出了三角形全等的判定方法:
但也有几处是值得思考和在以后教学中应该改进的地方:
1、在课堂上优等生急着演示、发言,后进生却成了观众和听众。如何做到面向全体,人人学有所得,也值得我们数学教师来探讨。
2、教学细节需进一步改进,教学时应多关注学生,在学习新知后,虽然大部分的学生都掌握了,但有少数后进生仍然是不理解。
⬘ 全等三角形课件 ⬘
可真让人捉摸不透啊!一根绳子,两头系起。这根普普通通的绳子究竟会给我们带来怎样的乐趣呢?老师这次可是给我们出了一个大难题啊!同学们的答案五花八门,但却没有一个猜中的,真是伤脑筋啊!
老师首先选了三位女生,上台示范,让我们更好的熟悉游戏规则。老师先让她们用绳子围一个正三角形,等她们确定好位置之后,老师用红领巾依次蒙住她们的眼睛,然后双手抱肩,原地转三圈,然后开始围三角形,可能是因为第一个上台没有经验,她们三个并没有达到老师的要求——围成一个正三角形,反而更像一个等腰三角形。
熟悉规则后的同学们,踊跃的举手,可老师没有叫那些举手的同学,而是叫了三个以前在课堂上举手发言不算积极的三个男生上了台。这次老师提升了难度,必须有一点在正北方,并且一上台就要蒙上眼睛。这次提升了难度后,我们都替他们捏了把汗啊!但他们三个不负众望,在一次次调整,一次次测量之后,围成了一个非常非常标准的正三角形,连老师也赞不绝口。
这次的作文课,让我们深切的体会到了团结、合作的重要性!
⬘ 全等三角形课件 ⬘
在复习《三角形全等》时,我是这样设计学案的,在学案中先梳理知识网络,体现基本知识点(基本概念,三角形全等的性质和5种判定方法、证明全等的一般思路和方法的归类总结等等),这些内容属于不讲内容。学案中的专题部分精心挑选跟中考相关的、能灵活应用三角形全等知识的、跟生活密切相关的。体现了数学来源于生活又服务于生活。题型设计有一定的梯度,让学生感兴趣通过预习讨论交流能够轻松掌握,体验成功的.快乐,也为以后做比较复杂的"题目奠定基础。大多数学生都积极参与,气氛还算活跃,尽管一些同学的思路有误,正好暴露了学生掌握知识存在的问题。也锻炼了学生语言表达能力,体验成功的喜悦,让学生在表现过程中享受乐趣。不足之处也有很多,因为担心局面不好掌握,所以只让学生展示方法,做法,在思路的挖掘分析上欠缺;个别学生因为不很自信,讲述有试探性,没有放开胆子大方展示自己的思路;还有一部分旁观者没有参与课堂,教师的点拨(追问思路、总结归类等)还不够等等。
总之,上了这么一节课,我的感悟也很多:学生的潜力真是好大啊,能自己总结出那么多的思路方法,能言简意赅地表达自己的见解,表现自己的愿望多么强烈…,学生也喜欢这样开放的课堂,“我参与,我快乐,我自信,我成长”,那就让我们把课堂还给学生吧。
⬘ 全等三角形课件 ⬘
教材分析:
《三角形全等复习课内容》选用义务教育课程标准实验教材《数学》(华师大版)九年级上册,三角形全等是初中数学中重要的学习内容之一。本套教材把三角形全等看作是三角形相似的特殊情况,同时三角形全等的概念,三角形全等的识别方法,与命题与证明,尺规作图几部分内容相互联系紧密,尤其是尺规作图中作法的合理性和正确性的解释依赖于全等知识。本章中三角形全等的识别方法的给出都通过学生画图、讨论、交流、比较得出,注重学生实际操作能力,为培养学生参与意识和创新意识提供了机会。
设计理念:
针对教材内容和初三学生的实际情况,组织学生通过摆拼全等三角形和探求全等三角形的活动,让学生感悟到图形全等与平移、旋转、对称之间的关系,并通过学生动手操作,让学生掌握全等三角形的一些基本形式,在探求全等三角形的过程中,做到有的放矢。然后利用角平分线为对称轴来画全等三角形的方法来解决实际问题,从而达到会辨、会找、会用全等三角形知识的目的。
教学目标:
1、通过全等三角形的概念和识别方法的复习,让学生体会辨别、探寻、运用全等三角形的一般方法,体会主动实验,探究新知的方法。
2、培养学生观察和理解能力,几何语言的叙述能力及运用全等知识解决实际问题的能力。
3、在学生操作过程中,激发学生学习的兴趣,培养学生主动探索,敢于实践的精神,培养学生之间合作交流的习惯。
教学的重点和难点:
重点:运用全等三角形的识别方法来探寻三角形以及运用全等三角形的知识解决实际问题。
难点:运用全等三角形知识来解决实际问题。
教学过程设计:
一、创设问题情境:
某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全相同的玻璃,那么你认为它应保留哪一块?(教师用多媒体)
师:请同学们先独立思考,然后小组交流意见
生:…………
师:上述问题实质是判断三角形全等需要什么条件的问题。
今天我们这节课来复习全等三角形。(引出课题)。
师:识别三角形及等的方法有哪些?
生:SAS 、 SSS、 ASA、 AAS 、 HL。
复习回顾:练习1、将两根钢条AA/、BB/中点O连在一起,使AA/、BB/绕着点O自由转动,做成一个测量工具,则A/B/的长等于内槽宽AB,判定△OAB≌△OA/B/现由( )
练习2、已知AB//DE,且AB=DE,
(1)请你只添加一个条件,使△ABC≌△DEF,
你添加的条件是
(2)添加条件后,证明△ABC≌△DEF?
[根据不同的添加条件,要求学生能够叙述三角形全等的条件和全等的现由,鼓励学生大胆的表述意见]
二、探求新知:
师:请同学们将两张纸叠起来,剪下两个全等三角形,然后将叠合的两个三角形纸片放在桌面上,从平移、旋转、对称几个方面进行摆放,看看两个三角形有一些怎样的特殊位置关系?
请同组合作,交流,并把有代表性的摆放进行投影。
熟记全等三角形的基本形式,为探求全等三角形打下基础,提醒学生注意两个全等三角形的对应边和对应角。学生的摆放形式很多,包括那些平时数学成绩不好的学生也跃跃欲试,教师给予肯定和鼓励激发他们学习的积极性和主动性。
例1、一张矩形纸片沿着对角线剪开,得到两张三角形纸片ABC、DEF,再将这两张三角形纸片摆成右图的形式,使点B、F、C、D处在同一条直线上,P、M、N为其他直线的交点。
(1)求证:AB⊥ED
(2)若PB=BC,请找出右图中全等三角形,并给予证明。
用多媒体演示图形的变化过程。
师:图3中AB与ED有怎样的位置关系?同学生猜想一下结果。
生甲:AB垂直ED
师:为什么?可以从几方面来考虑?
生乙:可以从图形运动变化的过程来考虑
生丙:可以考虑全等在已知条件下,显然有△ABC≌△DEF,故∠A=∠D,又∠ANP=∠DNC,所以,∠APN=∠DCN=900,即AB⊥ED。
(根据学生的回答,教师板演)
师:若PB=BC,找出右图中全等三角形,看看谁能找得最快?
生丁:△PBD≌△CBA(ASA)
师:板演,由AB⊥ED,可得到∠BPD=900,∠BPD=∠CBA,∠A=∠D,PB=BC,故有△PBD≌△CBA(ASA)。
师:还有其他三角形全等吗?
生:有,我连接BN,由勾股定理得PN=CN,就不难得到△APN≌△DCN。
(在错综复杂的图形中寻找全等三角形是一件不容易的事,要鼓励学生大胆的猜想,努力探求,在学生的叙述过程中,教师及时纠正学生叙述中的错误,训练学生严谨的学习态度和学习习惯。)
例2、(动手画)(1)已知OP为∠AOB平分线,请你利用该图画一对以OP所在直线为对称轴的全等三角形。
教师在黑板上画好∠AOB和直线OP,学生独立思考,然后请几个学生在黑板上演示。
师生总结:想要画出符合条件的三角形,只要在射线OA、OB上找到一对关于OP对称的点就可以了。
(2)利用上图作全等三角形方法,在△ABC中,∠B=600,∠ABC是直角,AD、CE是∠BAC,∠DCA的平分线,AD、CE相交于F,请判断FE与FD间数量关系。
师:请同学们用三角尺和量角器准确画出此图,然后量出EF、FD的长度,看看EF与FD长度
关系如何?
生:基本相等。
生:长度相等。
师:如何来证明他们相等?注意审题。
学生先独立思考后,组内交流,等到有同学举手发言。
生:在AC上取点H,使AH=AE,则△AEF≌△AHF则EF=FH
师:为什么要这么做?你是怎么想到的?
生:因为要证明线段相等要考虑三角形全等,而EF、FD所在两个三角形显然不全等,又AD是平分线,在AC上找出E关于AD有对称点H得到△AEF≌△AHF。
师:这样只能得到EF=FH。
生:再证明△FHC≌△FDC。
生:先求出AD、CE是角平分线∠APC=1200,则∠DPC=∠EPA=∠APH=600,所以∠HPC=
∠DPC=600,PC=PC,∠3=∠4,因为△HCP≌△DCP(ASA)所以PD=PH。
(看清题意,猜想结果是解决探究题的重要环节,教师要留给学生一定思考时间,同时鼓励学生尝试和交流,鼓励学生勇于探索以及同学之间的合作。)
师生共同小结:
1、熟记全等三角形的基本形态,会找全等三角形的对应边和对应角。
2、在错综复杂的几何图形中能够寻找全等三角形。
3、利用角平分线的对称性构造三角形全等,并利用三角形的全等性质解决线段之间的等量关系。
4、运用全等三角形的识别法可以解决很多生活实际问题。
作业:
1、在例2中,如果∠ACB不是直角,而(1)中的其他条件不变,请问:你在(1)中所得结论能成立吗?若成立,请证明,若不成立,请说明理由。
2、书本课后复习题
教学反思:
本教学设计从以下三方面考虑:
1、根据学生的学习情况,改进学生的学习方式,强调合作交流,探索学习,教师在教学过程中,努力为学生创设自主探索的氛围,让学生真正成为课堂主体。
2、重视对学生能力的培养,除常规的鼓励就大胆思考,积极发言,重视培养学生观察、操作、测试、思考的能力,学生的活跃,他们思考问题的方式是多种多样,教师从对完全更改,尊重他们的学习方式,这样有助于创新
3、重视对学生学习习惯的培养,全等三角形是几何部分内容说明书,有较强逻辑性,教师板演,以及在学生叙述中纠正学生的错误,是培养学生养成良好的习惯之一,同时学生学习习惯多方面的,在合作交流中,培养学生合作意识和合作习惯培养显得尤为重要。
⬘ 全等三角形课件 ⬘
复习这部分知识的设计指导思想,旨在通过学生自主归纳,整理回忆,从而形成知识链,这正是数学新课标倡导的理念,在教学过程中,例题的选择非常重要,一个好的例题能激发学生的兴趣,合理的变式会激起学时的探索欲望。所以,精选例题,合理组织教学内容,是我上复习课的宗旨。力求让学生通过复习,在主动获取知识,理解数学的思维方法,思维。
一、制订好复习课的复习目标
复习要对以前多节新课中的知识点或数学思想方法进行压缩整理,所以要制订好复习课的复习目标。首先,选择合适的知识范围非常重要。其次,应确定对所选知识点中重点的复习深度,过易会让学生索然无味,过难会让学生畏惧前行,失去信心。我对这节课的难度把握是保全突尖,教学流程本身有梯度,例题与配套变式也有梯度。不过对于例3“求证两线段相等”这个问题既需要添加辅助线,又要连续两次证全等。问题的梯度设置过大,许多学生还观察不出。假如这样设置①证全等②证线段相等,效果应该会更好。
二、精选例题,多加变式
这一部分的设计是整堂复习课的灵魂,一个好的例题能激起学生学习数学的兴趣,合理的变式会激起学生探索的欲望。通过变式训练,能让学生掌握解决这一类问题的基本方法,起到举一反三、触类旁通的作用。在设计上,分三个层次:“分析与归纳中的5题借助图形在分红隐含的条件,直接判断全等;理解与运用中的例1、例2,需要将间接条件转化成全等的直接条件,才能判断;最高层次:例3当条件不充分时,要有目的地添加辅助线。在本题中,就是要构造全等形。并连续两次证全等。
三、不足:
在课堂上对极少数学习有困难的学生关注不够。
⬘ 全等三角形课件 ⬘
全等三角形证明题1 在直角坐标系中,有两个点A(2,4) B(-2,-4), (即A.B两点是
关于圆点对称的),将直角坐标系关于Y轴翻折,得A1,B1,然后分别
连接A,A1和B,B1后,证AA1O和BB1O两三角行全等!
2有一个正方形,分别连接它的对角,求其中的全等三角形?
3 一个等腰三角形,做这个三角形的高线后,求其中的全等三角形?
4 在直角坐标系中,有一个直角三角形,将此三角形向左平移6格,
求平移后的三角形和原料的三角形是否全等?
5 有两个直三角形,其一个三角形三边的长为3,4,5,另一个三角形
6 一个等边三角形的边长为5cm,另一个等边三角形边长也是5cm,
角形CDA全等.
8等腰梯形ABCD对角相连求全等的三角形?
11 三角形ABC和三角形FDE,AB=FD,AC=FE,BC=DE,求全等(SSS)
12 三角形ABC和三角形FDE,∠C=∠E,AC=FE,∠A=∠F,求全等
AE垂直 BD,所以 角 EAC=角 DBA (为什么?因为角EAC+角BAE=90度,而角 BAE+角DBA=90度,所以 角 EAC=角 DBA )
∵∠DEC=50°
∴∠BEC=180°―∠EDC=180°―50°=130°
∴∠EBC=∠ECB=(180°―∠BEC)×(1/2)=25°
⬘ 全等三角形课件 ⬘
课题:
教学目标 :
1、知识目标:
(1)知道什么是全等形、及的对应元素;
(2)知道的性质,能用符号正确地表示两个三角形全等;
(3)能熟练找出两个的对应角、对应边。
2、能力目标:
(1)通过角有关概念的学习,提高学生数学概念的辨析能力;
(2)通过找出的对应元素,培养学生的识图能力。
3、情感目标:
(1)通过感受的对应美激发学生热爱科学勇于探索的精神;
(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。
教学重点:的性质。
教学难点 :找的对应边、对应角
教学用具:直尺、微机
教学方法:自学辅导式
教学过程 :
1、全等形及概念的引入
(1)动画(几何画板)显示:
问题:你能发现这两个三角形有什么美妙的关系吗?
一般学生都能发现这两个三角形是完全重合的。
(2)学生自己动手
画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。
(3)获取概念
让学生用自己的语言叙述:
、对应顶点、对应角以及有关数学符号。
2、性质的发现:
(1)电脑动画显示:
问题:对应边、对应角有何关系?
由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。
3、 找对应边、对应角以及性质的应用
(1) 投影显示题目:
D、AD∥BC,且AD=BC
分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。
说明:本题的解题关键是要知道中两个中,对应顶点定在对应的位置上,易错点是容易找错对应角。
分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来
说明:根据位置元素来找:有相等元素,其即为对应元素:
然后依据已知的对应元素找:(1)对应角所对的边是对应边,两个对应角所夹的边是对应边(2)对应边所对的角是对应角,两条对应边所夹的角是对应角。
说明:利用“运动法”来找
翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素
旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素
平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素
求证:AE∥CF
分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质――对应角相等
∴AE∥CF
说明:解此题的关键是找准对应角,可以用平移法。
分析:AB不是的对应边,
但它通过对应边转化为AB=CD,而使AB+CD=AD-BC
可利用已知的AD与BC求得。
说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。
(2)题目的解决
这些题目给出以后,先要求学生独立思考后回答,其它学生补充完善,并可以提出自己的看法。教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:
投影显示:
(1)对应角所对的边是对应边,两个对应角所夹的边是对应边;
(2)对应边所对的角是对应角,两条对应边所夹的角是对应角;
(3)有公共边的,公共边一定是对应边;
(4)有公共角的,角一定是对应角;
(5)有对顶角的,对顶角一定是对应角;
两个中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小的角)是对应边(或对应角)
4、课堂独立练习,巩固提高
此练习,主要加强学生的识图能力,同时,找准的对应边、对应角,是以后学好几何的关键。
5、小结:
(1)如何找的对应边、对应角(基本方法)
(2)的性质
(3)性质的应用
让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。
6、布置作业
a.书面作业 P55#2、3、4
b.上交作业 (中考题)
思考题:
板书设计 :
探究活动
(2)证明 :AF∥DE
⬘ 全等三角形课件 ⬘
一、回顾教学设计的思路:
复习课的类型很多,但目的都是帮助学生整理和贯通知识。复习课要精讲多练,但又不能把它演变成纯粹的习题课,否则效果甚微,为了能在有限的时间里得到比较有效的复习效果,我们集备组进行了反复的探讨,并结合学生层次和期中复习的综合性,选取从一个简单熟悉的图形出发,通过对它不断地叠加、变形衍生出许多新的问题,而这些问题所反映的知识又是相互联系,体现本章核心结构的,这当然要比给出不同的问题来落实重点知识好得多。另外为了解决抽象思维的不足,我们在课前准备了几何画板动态演示,以便让学生在课堂上能通过直观地观察进行联想,从课堂教学的效果来看,感觉教学设计意图在本次课中基本得到了贯彻,几何画板演示图形的旋转位置变化,不仅加深了学生对动态的理解,而且对动态问题进行静态研究提供了思路。
对一次复习课的探讨和实施过程,让我深切地感受到教师的教学设计意图、预见学生学习的困难情况、课前采取的应对策略、实施教学时对重点和难点的认识等等都直接会影响到一堂课的效果,这些都需要我们在课前进行深入地思考和研讨。
二、教学过程的成功之处:
1、本节课教学上我采用以引导发现法为主,并以讨论法、演示法相结合,以问题导入,循序渐近,由浅入深,从单一到综合,以逐步提高学生的应用能力。
2、多媒体辅助教学既能够直观、生动地反映图形,增加课堂的容量,又有利于突出重点、分散难点,增强了教学条理性,形象性,更好地提高了课堂效率。
3、教学中以多种形式(组合条件、添加条件、作全等三角形、练习等)强化学生对三角形全等判定的理解,并起到了一定的效果。
4、真正关注到中等偏下的学生,课堂中设计的问题有三分之二是针对这一部分学生,并在课堂中也正是让他们表现的。
5、营造了和谐轻松的课堂氛围,通过动手活动、分组交流归纳总结全等三角形的各种常见形式,这个环节的设计调动了学生的'积极性,让每一学生都获得了成功的喜悦。
三、教学过程的遗憾之处:
1、题量过大,课堂时间安排较紧,有些问题落实的还不够深入。
2、出示了几道中考题,虽然学生做了,教师讲了,但没有从题目本身往深处挖掘,对中考命题方向进行研究和探索,仅是为做题而做题。
总之,教师的教学技艺和水平在每天的工作中慢慢的提高,我会把教学反思一直坚持下去,因为它是我们教学提高的催化剂,更是学生学习进步的助力器。
⬘ 全等三角形课件 ⬘
全等三角形这节课上完之后,我感觉成功之处在于:
1.能驾驭教材,对学生提出的问题有灵活的解决办法。
2.在小组合作学习产生争议的时候,教师能放能收,处理的到位,符合新的课堂教学理念。
参与者、合作者、促进者。
平等、和谐的师生关系。
5.我觉得教师角色转变的重心在于使传统意义上的教师教和学生学,不断让位于师生互教互学,彼此形成一个真正的“学习共同体”。本节课,若按老的教学路子,应先告诉学生什么叫做全等,然后让学生把全等的特征和性质背下来,最后应用全等的`性质去解决实际问题,这样就完成了教学任务。而新的课程标准则要求教师引导学生经历从具体情境中抽象出数学知识的过程,并在这个过程中与学生平等地交流和给以恰到好处的点拨。在这点上,我处理的比较好。
教师的教学方式和师生互动方式的变革,实现现代信息技术与学科课程的整合。新课的引入、生活中平移现象的举例及平移在实际生活中的应用,都使用了多媒体的手段,为辅助我上好这节课,我设计了大量形象、直观的课件。
本节课不足之处:
对应线段、对应角时花费时间较多。
2.应该多举生活中的全等实例。
通过本节课教学,使我意识到今后应注意如下几个方面:
1.教学观念还要不断更新,使数学教育面向全体学生,实现——人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。
2.要不断学习新的教育理论,充实自己头脑,指导新课程教学实践。
3.注意评价的多元化,全面了解学生的数学学习历程,对数学学习的评价不仅要关注学生学习的结果,更要关注他们学习的过程,帮助学生认识自我,建立信心。
⬘ 全等三角形课件 ⬘
掌握三角??形全等的“角角边”条件,会把“角边角”转化成“角角边”。能运用全等三角形的条件,解决简单的推理证明问题。
经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程。
在探索归纳论证的过程中,体会数学的严谨性,体验成功的快乐。
将三角形“角边角”全等条件转化成“角角边”全等条件。
利用复习旧知三角形“角边角”全等判定定理:两角和它们夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)
⬘ 全等三角形课件 ⬘
一、说教材
全等三角形是八年级上册人教版数学教材第十一章的教学内容。本章是在学过了线段、角、相交线、平行线以及三角形的有关知识以及在七年级教材中的一些简单的说理内容之后来学习的,通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。
根据课程标准,确定本节课的目标为:
1、知道什么是全等形,全等三角形以及全等三角形对应的元素;
2、能用符号正确地表示两个三角形全等;
3、能熟练地找出两个全等三角形的对应顶点、对应边、对应角;
4、知道全等三角形的性质和判定,并能用其解决简单的问题要求学生会确定全等三角形的对应元素及对全等三角形性质的理解;
5、通过感受全等三角形的对应美,激发热爱科学勇于探索的精神。通过文字阅读与图形阅读,构建数学知识,体验获取数学知识的过程,培养学生勇于创新,多方位审视问题的创造技巧。
二、说教法
本节课以学生练习为主,教室归纳总结为辅的教学方法。教师一边用幻灯片演示讲解,一边让学生动手、动脑,充分调动学生的积极性和主动性,有机融合各种教法于一体,做到步步有序,环环相扣,不断引导学生动手、动口、动脑。积极参与教学过程,才能圆满完成教学任务,收到良好的教学效果。
1、教学生观察、归纳的方法
为了适应学生的认识思维发展水平,有序的引导学生观察、分析,得出结论,让学生通过观察——认识——实践——再认识,完成认识上的飞跃。
2、通过设疑,启发学生思考
根据练习情况设疑引导,重在让学生理解全等三角形的概念,展开学生的思维。
三、说学法
学生在学习过程中可能难于理解全等三角形的对应顶点、对应边、对应角。教师要做到教法与指导学习的学法有机统一。通过幻灯片演示,学生用学具操作体会,最终完成学习过程,达到教学目标。
1、看听结合,形成表象。看教师演示,听教师讲解,形成表象。
2、手脑结合,自主探究,学生为主体,充分使用学具,动手操作体会全等三角形。
四、说教学流程
本节课的教学过程是:首先,展示教师制作的一些图案,引导学生读图,激发学生兴趣,从图中去发现有形状与大小完全相同的图形。然后教师安排学生自己动手随意去做两个形状与大小相同的图形,通过动手实践,合作交流,直观感知全等形和全等三角形的概念。其次,通过阅读法让学生找出全等形和全等三角形的概念。然后,教师随即演示一个三角形经平移,翻折,旋转后构成的两个三角形全等。通过教具演示让学生体会对应顶点、对应边、对应角的概念,并以找朋友的形式练习指出对应顶点、对应边、对应角,加强对对应元素的熟练程度。此时给出全等三角形的表示方法,提示对应顶点,写在对应的位置,然后再给出用全等符号表示全等三角形练习,加强对知识的巩固,再给出练习判断哪一种表示全等三角形的方法正确,通过对图形及文字语言的综合阅读,由此去理解“对应顶点写在对应的位置上”的含义。再次,让学生阐述全等三角形的性质和判定。并通过练习来理解全等三角形的性质和判定,并渗透符号语言推理。最后教师小结,这节课我们知道了什么是全等形、全等三角形,学会了用全等符号表示全等三角形,会用全等三角形的性质和判定解决一些简单的实际问题。
一、教材分析
1.教材的地位和作用
本节课内容为全等三角形,是人教版数学八年级上册第十一章《全等三角形》的内容。它是继线段、角、相交线与平行线及三角形有关知识之后出现的,通过对本节的学习,可以丰富、加深学生对已知图形的认识,同时为后面学习全等三角形的条件、等腰三角形与轴对称作好铺垫,起着承上启下的作用。
2.教学的目标和要求
根据大纲要求及所教学生的实际情况,本节课制定了知识、能力、情感三方面的目标。
(一)知识目标:
(1)了解全等三角形的概念,会用平移、旋转、翻折等方法判定两个图形是否全等;
(2)知道全等三角形的有关概念,能在全等三角形中正确地找出对应顶点、对应边、对应角;
(3)能熟练地说出全等三角形的性质和判定,并会运用。
(二)能力目标:
(1)通过全等三角形有关概念的学习,提高学生数学概念的辨析能力;
(2)通过找出全等三角形的对应元素,培养学生的识图能力。
(3)通过学生练习,提高学生几何证题能力。
(三)情感目标:
通过各种真实、贴近生活的素材和问题情景,激发学生学习数学的热情和兴趣,培养学生勇于创新,多方位审视问题的创造技巧。
3.教学重点:
全等三角形的性质、判定及其应用。
4.教学难点:
(1)能在全等三角形的变换中准确找到对应边、对应角。
解决方法:利用动画的形式让学生直观的识别具体的图形和知识点从而突出和掌握重点。在对应边、对应角的识别查找中运用动画的展示,使学生能直观认识该知识点,化难为易,从而突破该难点。
(2)判定条件的对应性及顺序性。
二、教学方法
本节课以学生练习,老师点拨归纳等教学方法。教师一边用多媒体演示讲解,一边让学生在观察的基础上动手、动脑,充分调动学生的积极性和主动性。只有学生积极参与教学过程,才能圆满完成教学任务,收到良好的教学效果。同时引导学生寻找题目的隐含条件,启发学生发现问题,思考问题,培养学生的逻辑思维能力,推理论证能力,分析问题解决问题的能力,逐步设疑,创设问题情景,搭建参与平台,让学生积极参与讨论,肯定成绩,及时表扬,使学生感受成功的喜悦,提高他们学习的兴趣和学习的积极性。
-
推荐阅读:
三角形的课件(精华十四篇)
三角形角的关系教案
三角形角的关系教案(精选20篇)
等边三角形的教案(汇集12篇)
2025解直角三角形教案(精华九篇)
人教版四年级下册数学《三角形的特性》教案(必备5篇)
-
述职报告之家小编为您推荐全等三角形课件专题,欢迎访问:全等三角形课件
